

Radar Sensor Production Test

Radar sensors are core autonomous-driving elements and their testing concepts need to meet current and future challenges for connected cars and sensor fusion. The UTP-5065 radar test system from NOFFZ Technologies offers a compact vertical design and contains everything you need for state-of-the-art measurement and sensor calibration. The test-bench setup and component selection are tuned for highly accurate and cost-efficient automotive radar sensor production testing.

Application Challenges

 High-volume production and automation capability with short cycle time and a design that saves floor space

The Noffz Advantage

- Integration of NI VRTS radar object simulation ranging from 76–81 GHz and 4 GHz bandwidth for single- or multi-angular deviating objects
- State-of-the-art test system offers best conditions in environmental quality, functionality, modularity, flexibility, accuracy, and cost-efficiency
- Flexible and modular end-of-line test solutions, including run-in/screening solution integration for environmental tests
- Highly accurate measurement and calibration offering azimuth and elevation DUT motion in the same test system
- Clean anechoic environment and small DUT motion unit for stable and reproduceable measurement quality

The Noffz Radar Test Solution

Vertical design saves up to 70 percent on the footprint and is compatible with manual and automated DUT test system input.

Best reflection suppression and analysis are achieved through a clean anechoic environment and small DUT motion.

Two-axis DUT motion for target detection and recognition and designed specifically for a vertical compact antenna test range (CATR) solution.

Figure 1. Noffz Radar Test System in production environment

Key Specifications

	DUT / RTS Setup	Direct-Beam or CATR Design
Key Features	Internal DUT Handling	Automated
	External DUT Handling	Manual handling or fully automated with robot or pick-and-place
	Frequency Ranges	76-81 GHz/24 GHz (other frequencies upon request)
	Radar Objects	Single target or multiple angular deviating targets
	Radar Object Definition	Variable distance, power level (RCS), and target velocity
	Target Simulator Bandwidth	Up to 5 GHz
	Measurement Axis	Azimuth and elevation
	Axis Motion	Both >±90 deg
	Motion Accuracy	>0.01 deg position repeatability
RF Measurement	Frequency Domain Analysis	EIRP, occupied bandwidth, chirp linearity
	Time Domain Analysis	Chirp power, power over time
	Chirp Analysis	Chirp's rate, length, and rate deviation
	Further Measurements	Radiation pattern, noise, spectrum occupancy, beam width
Mechanics / Power Supply	Housing Dimensions	800 x 1500 (1800) x 2700 mm (WxDxH)
	Setup	Vertical/distance between radar sensor and target simulator 1.0 - 2.5 m (CATR) available for far=field distances > 2.5 m

System Integration on Your Terms

NI offers a variety of solution integration options customized to your application-specific requirements. You can use your own internal integration teams for full system control or leverage the expertise of our worldwide network of NI Partners to obtain a turnkey system. To learn how you can increase product quality and shorten test timelines, contact your account manager or NI at (888) 280-7645 or info@ni.com.

Contact your NI account manager or Noffz Technologies to learn more about how NI + Noffz can help you increase product quality and accelerate testing timelines.

+49 2151-99878-0 info@noffz.com

© 2020 National Instruments. All rights reserved. National Instruments, NI, and ni.com are trademarks of National Instruments Corporation. Other product and company names listed are trademarks or trade names of their respective companies. An NI Partner is a business entity independent from NI and has no agency, partnership, or joint-venture relationship with NI.